
Derivations used in Image.hpp calculations



First order smoothing recursive filtering

Given a raw image, the smoothed version of this image using a 1st order exponential recursive filter, writes for each channel:

output[i, j] =
∑

uv c a
|u−i||v−j| input[u, v], c

def
=

(
1+a
1−a

)2
The parameter is related to the smoothing filter window size in pixel, with 90% of the signal to be in a the pixel window:

a = (1− p)
1

window

with p = 0.9.

The implementation is a simple four directional 1st order recurrent filter, writing for a {0, H{×{0, V { discrete image:

output[i, j] ← a output[i− 1, j] + (1− a) input[i, j] i = 1 · · ·H − 1
output[i, j] ← a output[i+ 1, j] + (1− a) output[i, j] i = H − 2 · · · 0
output[i, j] ← a output[i, j − 1] + (1− a) output[i, j] j = 1 · · ·V − 1
output[i, j] ← a output[i, j + 1] + (1− a) output[i, j] j = V − 2 · · · 0

In particular the computation time does not depend on the smoothing window.



Color edge eigen elements

Given a blue, red, green (b, g, r) three-channel color image the local intensity derivative 3× 2 matrix SVD writes:

J(p)
def
= ∂pi(p) =

 kb lb
kg lg
kr lr


︸ ︷︷ ︸

U

(
G 0
0 g

) (
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,p

def
= (i, j)T , i

def
= (b, g, r)T

with UT U = I and we easily obtain, writing Jxx
def
=

∑
k∈{b,g,r} J

2
kx, Jxx

def
=

∑
k∈{b,g,r} Jkx Jky, Jyy

def
=

∑
k∈{b,g,r} J

2
ky,{ √

Jxx + Jyy =
√

G2 + g2 edge magnitude
1
2
arctan

(
2 Jxy

Jyy−Jxx

)
= θ edge orientation

as verified by the following piece of code:

with(LinearAlgebra):
J := Matrix([[k_b, l_b], [k_g, l_g], [k_r, l_r]]) . Matrix([[G, 0], [0, g]]) . Matrix([[cos(theta), -sin(theta)], [sin(theta), cos(theta)]]):
eq := simplify({
Jxx = J[1][1]ˆ2 + J[2][1]ˆ2 + J[3][1]ˆ2,
Jxy = J[1][1] * J[1][2] + J[2][1] * J[2][2] + J[3][1] * J[3][2],
Jyy = J[1][2]ˆ2 + J[2][2]ˆ2 + J[3][2]ˆ2
}, {
k_bˆ2 + k_gˆ2 + k_rˆ2 = 1,
k_b * l_b + k_g * l_g + k_r * l_r = 0,
l_bˆ2 + l_gˆ2 + l_rˆ2 = 1
}):
zero := factor(combine(simplify(subs(eq, {
Jxx + Jyy - (Gˆ2 + gˆ2),
2 * Jxy / (Jyy - Jxx) - tan(2 * theta),
(Jyy - Jxx)ˆ2 + (2 * Jxy)ˆ2 - (Gˆ2 - gˆ2)ˆ2,
Jxx * Jyy - Jxyˆ2 - Gˆ2 * gˆ2
}))));



It generalizes the mono-channel monochrome edge magnitude G
def
=

√
I2x + I2y and orientation θ = − arctan (Iy/Ix), or a three-channel color image

with proportional gradients, i.e., with k2
b + k2

g + k2
r = 1, while kg = kr = 0 in the mono-channel case:

J(p) = ∂pi(p)
def
=

 kb
kg
kr

 (Ix, Iy) =

 kb
kg
kr

 (1, 0)

︸ ︷︷ ︸
U

(
G 0
0 0

) (
Ix
G

Iy
G

− Iy
G

Ix
G

)
,

i.e., it corresponds to the case where g = 0.

As a consequence, g/G provides an indication of how much the three-channels are linearly coherent.

Then the tricky point is to manage the angle θ in the four quadrants, since the angle θ is estimated in [−Π/2,Π/2], and in fact only up to a Π constant
(adding Π in the equation does not modified then). we thus must estimate the direction of the gradient to obtain this Π constant. Here we estimate this
direction averaging the gradient of the three channels, i.e., use the following experimental rule, writing Jx

def
=

∑
k∈{b,g,r} Jkx and Jy

def
=

∑
k∈{b,g,r} Jky, in

order to obtain θ ∈ [0, 2Π[:

θ ← if θ < 0 then Π+ θ else θ
θ ← if Jy > 0 or (Jx > 0 and Jy = 0) then Π+ θ else θ,

as visible for this test image:

remembering that the vertical axis is up side down in images, and noticing that the image has been smoothed before the edge calculation, in order to
reduce the discretization local errors. The left image is a circular blob, and the right image displays the edge magnitude in blue, and the edge orientation
in red, from 0 to 360 degree.



Image blob segmentation, using a standard colorization algorithm

Here are the algorithm and derivations used in Image::channel({do: blob segments.

We consider an image with a background and “blobs”, i.e., disconnected regions.

We consider as input binary image (a “calque”) I[p] ∈ {−1,M{, p = (i, j) ∈ {0, width{×{0, height{, where M
def
= width height is the

image size, while I[p] < 0 outside a blob.

On output I[p] ∈ {−1,M{ corresponds to the index of the obtained blob.

Here we consider the following indexing: I[p] = q, q = i + width j, stating that the pixel at p is chained to the pixel at q, unless I[p] <
0, i.e. a pixel outside a blob.

We consider the following algorithm to collect the different connected blobs:

- Initialization: Each pixel is considered as a singleton, i.e., a blob of size 1, setting:
I[p] = p

- Repeat for each pixel:
- Chained index reduction: Each pixel index is set to the smallest value, i.e.:
while(I[I[p]]< I[p]) I[p] = I[I[p]]
- Merge connected pixels, horizontaly and verticaly (i.e., 4-connectivity), i.e.:
if (0 <= I[i, j] && 0 <= I[i-1, j]) I[i, j] = I[i-1, j] = min(I[i, j], I[i-1, j])
if (0 <= I[i, j] && 0 <= I[i, j-1]) I[i, j] = I[i, j-1] = min(I[i, j], I[i, j-1])
Untill no more index change.

At the convergence, each pixel index corresponds to the blob smallest pixel index.

./Image.html#blobs_segment


Then each blob are scanned in order to calculate basic parameters: size, centroids c, enclosing rectangle, second order momenta geometry, i.e. using the
very standard derivation:

mpq
def
=

∑
ij I[i, j] i

p jq,

c
def
=

(
m10

m00
, m01

m00

)T

,

µpq
def
=

∑
ij I[i, j] (i− c[0])p (j − c[1])q,

C
def
=

(
µ20 µ11

µ11 µ02

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

) (
L 0
0 l

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

yielding: 
L = µs+µq

2
,

l = µs−µq

2
,

tan(2 θ) = −2µ11

µd
,

e = µq

µs
,

with


µs

def
= µ20 + µ02,

µd
def
= µ20 − µ02,

µq
def
=

√
µ2
d + µ2

11.

Here L ≥ l and the thinness is 0 for a circular form and 1 for a line segment, as verified by this piece of maple algebra:

with(LinearAlgebra):
assume(mu_20 > 0, mu_02 > 0, mu_11 :: real):
Mu := Matrix([[mu_20, mu_11], [mu_11, mu_02]]):
mu_R := Matrix([[cos(theta), -sin(theta)], [sin(theta), cos(theta)]]):
mu_D := Matrix([[L, 0], [0, l]]):

mu_s := mu_20 + mu_02:
mu_d := mu_20 - mu_02:
mu_q := sqrt(mu_dˆ2 + mu_11ˆ2):
sl := {

L = (mu_s + mu_q)/2,
l = (mu_s - mu_q)/2,
sin(theta_2) = -2 * mu_11 / mu_q,
cos(theta_2) = mu_d / mu_q

}:
zero := simplify(subs(sl, combine(subs(theta = theta_2 / 2, simplify(convert(Mu - Transpose(mu_R) . mu_D. mu_R, set))))));



Normalized correlation similarity

We consider the standard image correlation ratio between two images I0[i, j] and I1[i, j] of the same sizes S = width height, writing:

µ0
def
= 1

S

∑
ij I0[i, j], µ1

def
= 1

S

∑
ij I0[i, j], σ0

def
=

√
1

S−1

∑
ij(I0[i, j]− µ0)2, σ1

def
=

√
1

S−1

∑
ij(I1[i, j]− µ1)2

we obtain:

R(I0, I1)
def
= 1

S−1

∑
ij

(
I0[i,j]−µ0

σ0

) (
I1[i,j]−µ1

σ1

)
=

Sm11
01−m10

01 m
01
01√

(Sm20
01−(m10

01)
2) (Sm02

01−(m01
01)

2)
∈ [−1, 1]

writing mpq
01 =

∑
ij I0[i, j]

p I1[i, j]
q, thus µ0 = m10/m00, µ1 = m01/m00, σ2

0 = (m20 −m2
10/m00)/(m00 − 1), σ2

1 = (m02 −m2
01/m00)/(m00 − 1).

It is known to be symmetric and normalized −1 ≤ R(I0, I1) ≤ 1.

It is related to the Euclidean distance between the two normalized images:

D(I0, I1)
def
= 1

S−1

∑
ij

(
I0[i,j]−µ0

σ0
− I1[i,j]−µ1

σ1

)2

= 2 (1−R(I0, I1)) ∈ [0, 4]

https://en.wikipedia.org/wiki/Digital_image_correlation_and_tracking#Overview
https://en.wikipedia.org/wiki/Correlation_and_dependence#Definition


Incremental affine transformation

- The transformation is a general or specialized affine transform written:(
i
j

)
←

(
translationi

translationj

)
+

(
zoom+ warp −rotation+ twist

rotation+ twist zoom− warp

) (
i
j

)
where:
- horizontal: considers only an horizontal translation, 1 parameter,
- translation: considers a 2D horizontal and vertical translation, 2 parameters,
- rigid: considers translation and a (local) 2D rotation, 3 parameters,
- similarity: considers translation, rotation and a scale factor change (i.e., a zoom), 4 parameters,
- affine: considers translation, rotation, zoom and warp and twist shears, i.e., a 6 parameters affine transform.


